2022 AMC 12A
 Problems and Answer Key

PROFESSOR CHEN EDUCATION PALACE

1. (2022 AMC 10A Problem 1)(2022 AMC 12A Problem 1)

What is the value of

$$
3+\frac{1}{3+\frac{1}{3+\frac{1}{3}}} ?
$$

A. $\frac{31}{10}$
B. $\frac{49}{15}$
C. $\frac{33}{10}$
D. $\frac{109}{33}$
E. $\frac{15}{4}$
Solution:
(D) $\frac{109}{33}$
2. (2022 AMC 10A Problem 3)(2022 AMC 12A Problem 2)

The sum of three numbers is 96 . The first number is 6 times the third number, and the third number is 40 less than the second number. What is the absolute value of the difference between the first and second numbers?
A. 1
B. 2
C. 3
D. 4

Solution: (E) 5

3. (2022 AMC 12A-Problem 3)

Five rectangles, A, B, C, D, and E, are arranged in a square as shown below. These rectangles have dimensions $1 \times 6,2 \times 4,5 \times 6,2 \times 7$, and 2×3, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?
A. A
B. B
D. D
E. E

Solution: (B) B

*Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

Website: www.professorchenedu.com Phone: +1 626-385-7691

E-mail: contact@professorchenedu.com
Wechat ID: professorchenedu

Figure 1: 2022 AMC 12A Problem 3
4. (2022 AMC 10A Problem 7)(2022 AMC 12A Problem 4)

The least common multiple of a positive integer n and 18 is 180 , and the greatest common divisor of n and 45 is 15 . What is the sum of the digits of n ?
A. 3
B. 6
C. 8
D. 9
E. 12

Solution: (B) 6

5. (2022 AMC 12A Problem 5)

The taxicab distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the coordinate plane is given by $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. For how many points P with integer coordinates is the taxicab distance between P and the origin less than or equal to 20?
A. 441
B. 761
C. 841
D. 921
E. 924

Solution: (C) 841
6. (2022 AMC 10A Problem 8)(2022 AMC 12A Problem 6)

A data set consists of 6 (not distinct) positive integers: 1, 7, 5, 2, 5, and X. The average (arithmetic mean) of the 6 numbers equals a value in the data set. What is the sum of all possible values of X ?
A. 10
B. 26
C. 32
D. 36
E. 40

Solution: (D) 36

7. (2022 AMC 10A Problem 9)(2022 AMC 12A Problem 7)

A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

Page 2
Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

Website: www.professorchenedu.com
Phone: +1 626-385-7691

E-mail: contact@professorchenedu.com
Wechat ID: professorchenedu

Figure 2: 2022 AMC 12A Problem 7
A. 120
B. 270
C. 360
D. 540
E. 720

Solution:
 (D) 540

8. (2022 AMC 12A Problem 8)

The infinite product

$$
\sqrt[3]{10} \cdot \sqrt[3]{\sqrt[3]{10}} \sqrt[3]{\sqrt[3]{\sqrt[3]{10}}} \cdots
$$

evaluates to a real number. What is that number?
A. $\sqrt{10}$
B. $\sqrt[3]{10}$
C. $\sqrt[4]{1000}$
D. 10
E. $10 \sqrt[3]{10}$

Solution: (A) $\sqrt{10}$

9. (2022 AMC 10A Problem 12)(2022 AMC 12A Problem 9)

On Halloween 31 children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.
"Are you a truth-teller?" The principal gave a piece of candy to each of the 22 children who answered yes.
"Are you an alternater?" The principal gave a piece of candy to each of the 15 children who answered yes.
"Are you a liar?" The principal gave a piece of candy to each of the 9 children who answered yes. How many pieces of candy in all did the principal give to the children who always tell the truth?
A. 7
B. 12
C. 21
D. 27
E. 31

Solution: (A) 7

Page 3
Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

Website: www.professorchenedu.com
Phone: +1 626-385-7691

E-mail: contact@professorchenedu.com Wechat ID: professorchenedu
10. (2022 AMC 10A Problem 14)(2022 AMC 12A Problem 10)

How many ways are there to split the integers 1 through 14 into 7 pairs so that in each pair the greater number is at least 2 times the lesser number?
A. 108
B. 120
C. 126
D. 132
E. 144

Solution: (E) 144

11. (2022 AMC 12A Problem 11)

What is the product of all real numbers x such that the distance on the number line between $\log _{6} x$ and $\log _{6} 9$ is twice the distance on the number line between $\log _{6} 10$ and 1 ?
A. 10
B. 18
C. 25
D. 36
E. 81

Solution: (E) 81

12. (2022 AMC 12A Problem 12)

Let M be the midpoint $\overline{A B}$ in regular tetrahedron $A B C D$. What is $\cos (\angle C M D)$?
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{2}{5}$
$\begin{array}{ll}\text { D. } \frac{1}{2} & \text { E. } \frac{\sqrt{3}}{2}\end{array}$
13. (2022 AMC 12A Problem 13)

Let R be the region in the complex plane consisting of all complex numbers z that can be written as the sum of complex numbers z_{1} and z_{2}, where z_{1} lies on the segment with endpoints 3 and $4 i$, and z_{2} has magnitude at most 1 . What integer is closest to the area of R ?
A. 13
B. 14
C. 15
D. 16
E. 17
14. (2022 AMC 12A Problem 14)

What is the value of $(\log 5)^{3}+(\log 20)^{3}+(\log 8)(\log 0.25)$, where all logarithms have base 10 ?
A.
$\frac{3}{2}$
B. $\frac{7}{4}$
C. 2
D. $\frac{9}{4}$
E. 3

Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

Website: www.professorchenedu.com
Phone: +1 626-385-7691

E-mail: contact@professorchenedu.com
Wechat ID: professorchenedu

Solution: (C) 2

15. (2022 AMC 10A Problem 16)(2022 AMC 12A Problem 15)

The roots of the polynomial $10 x^{3}-39 x^{2}+29 x-6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
A. $\frac{24}{5}$
B. $\frac{42}{5}$
C. $\frac{81}{5}$
D. 30
E. 48

Solution: (D) 30

16. (2022 AMC 12A Problem 16)

A triangular number is a positive integer that can be expressed in the form $t_{n}=1+2+3+\cdots+n$, for some positive integer n. The three smallest triangular numbers that are also perfect squares are $t_{1}=1=1^{2}, t_{8}=36=6^{2}$, and $t_{49}=1225=35^{2}$. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?
A. 6
B. 9
C. 12
D. 18
E. 27

Solution: (D) 18

17. (2022 AMC 12A Problem 17)

Suppose a is a real number such that the equation

$$
a \cdot(\sin x+\sin (2 x))=\sin (3 x)
$$

has more than one solution in the interval $(0, \pi)$. The set of all such a can be written in the form $(p, q) \cup(q, r)$, where p, q, and r are real numbers with $p<q<r$. What is $p+q+r$?
A. -4
B. -1
C. 0
D. 1 E. 4

Solution:
 (A) -4

18. (2022 AMC 10A Problem 18)(2022 AMC 12A Problem 18)

Let T_{k} be the transformation of the coordinate plane that first rotates the plane k degrees counter-clockwise around the origin and then reflects the plane across the y-axis. What is the least positive integer n such that performing the sequence of transformations $T_{1}, T_{2}, T_{3}, \cdots, T_{n}$ returns the point $(1,0)$ back to itself?
A. 359
B. 360
C. 719
D. 720
E. 721

Page 5
Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

Website: www.professorchenedu.com
Phone: +1 626-385-7691

E-mail: contact@professorchenedu.com
Wechat ID: professorchenedu

Solution: (A) 359
19. (2022 AMC 10A Problem 22)(2022 AMC 12A Problem 19)

Suppose that 13 cards numbered $1,2,3, \ldots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards 1, 2, 3 are picked up on the first pass, 4 and 5 on the second pass, 6 on the third pass, $7,8,9,10$ on the fourth pass, and $11,12,13$ on the fifth pass.

Figure 3: 2022 AMC 12A Problem 19
For how many of the 13 ! possible orderings of the cards will the 13 cards be picked up in exactly two passes?
A. 4082
B. 4095
C. 4096
D. 8178
E. 8191

Solution: (D) 8178

20. (2022 AMC 10A Problem 23)(2022 AMC 12A Problem 20)

Isosceles trapezoid $A B C D$ has parallel sides $\overline{A D}$ and $\overline{B C}$, with $B C<A D$ and $A B=C D$. There is a point P in the plane such that $P A=1, P B=2, P C=3$, and $P D=4$. What is $\frac{B C}{A D}$?
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$
E. $\frac{3}{4}$

21. (2022 AMC 12A Problem 21)

Let $P(x)=x^{2022}+x^{1011}+1$. Which of the following polynomials is a factor of $P(x)$?
A. $x^{2}-x+1$
B. $x^{2}+x+1$
C. $x^{4}+1$
D. $x^{6}-x^{3}+1$
E. $x^{6}+x^{3}+1$

Solution: (E) $x^{6}+x^{3}+1$
22. (2022 AMC 12A Problem 22)

Let c be a real number, and let z_{1} and z_{2} be the two complex numbers satisfying the equation $z^{2}-c z+10=0$. Points $z_{1}, z_{2}, \frac{1}{z_{1}}$, and $\frac{1}{z_{2}}$ are the vertices of (convex) quadrilateral Q in the

Page 6

Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

Website: www.professorchenedu.com
Phone: +1 626-385-7691

E-mail: contact@professorchenedu.com
Wechat ID: professorchenedu
complex plane. When the area of Q obtains its maximum possible value, c is closest to which of the following?
A. 4.5
B. 5
C. 5.5
D. 6
E. 6.5

Solution: (A) 4.5

23. (2022 AMC 12A Problem 23)

Let h_{n} and k_{n} be the unique relatively prime positive integers such that

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{h_{n}}{k_{n}} .
$$

Let L_{n} denote the least common multiple of the numbers $1,2,3, \cdots, n$. For how many integers n with $1 \leq n \leq 22$ is $k_{n}<L_{n}$?
A. 0
B. 3
C. 7
D. 8
E. 10

Solution: (D) 8

24. (2022 AMC 10A Problem 24)(2022 AMC 12A Problem 24)

How many strings of length 5 formed from the digits $0,1,2,3,4$ are there such that for each $j \in\{1,2,3,4\}$, at least j of the digits are less than j ? (For example, 02214 satisfies this condition because it contains at least 1 digit less than 1 , at least 2 digits less than 2 , at least 3 digits less than 3, and at least 4 digits less than 4 . The string 23404 does not satisfy the condition because it does not contain at least 2 digits less than 2.)
A. 500
B. 625
C. 1089
D. 1199
E. 1296

25. (2022 AMC-12A Problem 25)

A circle with integer radius r is centered at (r, r). Distinct line segments of length c_{i} connect points $\left(0, a_{i}\right)$ to $\left(b_{i}, 0\right)$ for $1 \leq i \leq 14$ and are tangent to the circle, where a_{i}, b_{i}, and c_{i} are all positive integers and $c_{1} \leq c_{2} \leq \cdots \leq c_{14}$. What is the ratio $\frac{c_{14}}{c_{1}}$ for the least possible value of r ?
A. $\frac{21}{5}$
B. $\frac{85}{13}$
C. 7
D. $\frac{39}{5}$
E. 17

Solution: (E) 17

Page 7

Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or reproduced without the written permission of Professor Chen Education Palace.

