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Lagrangian Mechanics Approach ∗

Steven Chen
PROFESSOR CHEN EDUCATION PALACE

1. My Motivation of Writing This Solution
Although this is the last part of the last problem in 2019 USAPhO contest, it can be easily solved
by using the conservation of the system’s horizontal-component momentum and the conservation
of the system’s total energy.

However, AAPT’s official solution has the following comment that causes my surprise: “Another
common route was to apply Lagrangian mechanics, solving the Euler-Lagrange equations, or equiv-
alently to solve the F = ma equations. These are quite complicated, and nobody managed
to integrate them to get the correct answer1.”

My original intuition about why the Lagrangian mechanics approach should not be too hard
is as follows. If we use Lagrangian mechanics to solve this problem, we only need to introduce
two generalized coordinates: the position of the bead and the angle of the rod. Each object’s
kinetic energy and gravitational potential energy are also simple functions of these two generalized
coordinates. So the two Euler-Lagrange equations can be easily derived and are not too complicated.
Based on my intuition, I did not understand why no student who used this approach successfully
solved these seemingly simple equations.

With this surprise and curiosity why ALL students who took this approach were stuck in the
contest, I decided to use the Lagrangian mechanics approach to fully solve this problem. I aim to
achieve the following objectives from my solution in this note.

1. From a Physics Olympiad coach’s perspective, I need to diagnose where students were stuck.
Therefore, I can get a clear sense what specific problem-solving skills I shall teach my future
students to help them get through this type of problems.

2. I must admit that Lagrangian mechanics is not a quick and simple approach to this problem.
I would not recommend students to use this approach if they saw a similar problem. However,
it does not entail that Lagrangian mechanics approach is not useful. Nobody knows whether
on some day, AAPT will design a USAPhO problem that the easiest way to solve it is to use
Lagrangian mechanics, not Newtonian mechanics. Therefore, I want to use this note to raise
student awareness of the existence of this non-Newtonian mechanics approach and its power
to solve problems.

∗Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document may be copied or
reproduced without the written permission of Professor Chen Education Palace.

1https://www.aapt.org/Common/upload/USAPhO-2019-Solutions_rev-4012021.pdf

1

https://www.aapt.org/Common/upload/USAPhO-2019-Solutions_rev-4012021.pdf


PROFESS
OR

CHEN

EDUCATIO
N

PA
LA

CE

Website: www.professorchenedu.com E-mail: contact@professorchenedu.com
Phone: +1 626-385-7691 Wechat ID: professorchenedu

The rest of this note is organized as follows. In §2, I recap the problem. In §3, I present my
solution. In §4, I summarize some skills that I used to solve this problem.

2. Problem
Pitfall
A bead is placed on a horizontal rail, along which it can slide frictionlessly. It is attached to the
end of a rigid, massless rod of length R. A ball is attached at the other end. Both the bead and
the ball have mass M . The system is initially stationary, with the ball directly above the bead.
The ball is then given an infinitesimal push, parallel to the rail.

Figure 1: 2019 USAPhO Question B3, Figure 1

Assume that the rod and ball are designed in such a way (not shown explicitly in the diagram)
so that they can pass through the rail without hitting it. In other words, the rail only constrains
the motion of the bead. Two subsequent states of the system are shown below.

Figure 2: 2019 USAPhO Question B3, Figure 2

(a) Derive an expression for the force in the rod when it is horizontal, as shown at left above, and
indicate whether it is tension or compression.

(b) Derive an expression for the force in the rod when the ball is directly below the bead, as shown
at right above, and indicate whether it is tension or compression.

(c) Let θ be the angle the rod makes with the vertical, so that the rod begins at θ = 0. Find the
angular velocity ω = dθ/dt as a function of θ.

3. My Solution
I present my solution of using the Lagrangian mechanics approach in this section. Recall that this
problem has three parts. However, this note only focuses on Part c. So we skip solving Parts a and
b.

Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document
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We establish a coordinate system in the diagram. We set the bead’s initial position as the
origin. We put the x-axis on the horizontal rail. The positive direction is toward the right. The
unit vector is denoted as î. We put the y-axis in the upright position. The positive direction is
toward the top. The unit vector is denoted as ĵ.

We define two generalized coordinates. One is the bead’s x-component coordinate, x. The other
one is the rod’s angle from the upright position, θ.

It is worth noting that these generalized coordinates are functions of time t. To lighten notation,
we suppress their dependencies on t unless necessary.

Thus, the position of the bead is −→r1 = x î. The position of the ball is −→r2 = (x+R sin θ) î +
R cos θ ĵ.

Hence, the velocity of the bead is given by

−→v1 = d−→r1
dt

= ẋ î.

The velocity of the ball is given by

−→v2 = d−→r2
dt

=
(
ẋ+R cos θ · θ̇

)
î−R sin θ · θ̇ ĵ

Therefore, the system’s total kinetic energy is

T = 1
2Mv2

1 + 1
2Mv2

2.

The system’s total potential energy is

V = MgR cos θ.

Hence, the system’s Lagrangian is

L = T − V

= 1
2M

(
2ẋ2 +R2θ̇2 + 2ẋR cos θ · θ̇

)
−MgR cos θ. (1)

We have the following Euler-Lagrange equations:

d

dt

∂L
∂ẋ

= ∂L
∂x

(2)

d

dt

∂L
∂θ̇

= ∂L
∂θ

(3)

Plugging (1) into (2) and (3), we get

d

dt

(
2ẋ+R cos θ · θ̇

)
= 0 (2′)

d

dt

(
Rθ̇ + ẋ cos θ

)
= −ẋ sin θ · θ̇ + g sin θ (3′)
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Now, we solve equations (2’) and (3’).
Taking integral of (2’), we get

2ẋ+R cos θ · θ̇ = const.

We have the initial values x0 = 0, θ0 = 0, θ̇0 = 0. Thus, the constant above is 0. Thus,

2ẋ+R cos θ · θ̇ = 0. (2′′)

Plugging (2”) into (3’) to eliminate ẋ, we get the following equation:

R
(
1 + sin2 θ

)
θ̈ +R sin θ cos θ · θ̇2 − 2g sin θ = 0. (4)

Next, we solve this equation. We have

θ̈ = dθ̇

dt

= dθ̇

dθ
· dθ
dt

= dθ̇

dθ
θ̇. (5)

Plugging (5) into (4), we get

R
(
1 + sin2 θ

) dθ̇
dθ
θ̇ +R sin θ cos θ · θ̇2 − 2g sin θ = 0.(4′)

Multiplying both sides of (4’) by dθ, then the R.H.S. of (4’) is still 0 and the L.H.S. of (4’) can
be reorganized as follows:

R
(
1 + sin2 θ

)
dθ̇ · θ̇ +R sin θ cos θ · θ̇2dθ − 2g sin θdθ

= R

2
(
1 + sin2 θ

)
dθ̇2 +R sin θ cos θ · θ̇2dθ − 2g sin θdθ

= R

2
(
1 + sin2 θ

)
dθ̇2 + R

2 sin 2θ · θ̇2dθ − 2g sin θdθ

= R

2
(
1 + sin2 θ

)
dθ̇2 − R

4 θ̇
2d cos 2θ + 2gd cos θ

= R

2
(
1 + sin2 θ

)
dθ̇2 − R

4
(
d

(
θ̇2 cos 2θ

)
− cos 2θdθ̇2

)
+ 2gd cos θ

= R

4
(
2 + 2 sin2 θ + cos 2θ

)
dθ̇2 − R

4 d
(
θ̇2 cos 2θ

)
+ 2gd cos θ

= 3R
4 dθ̇2 − R

4 d
(
θ̇2 cos 2θ

)
+ 2gd cos θ

= d

(3R
4 θ̇2 − R

4 θ̇
2 cos 2θ + 2g cos θ

)
.

The first equality follows from the property that udu = 1
2du

2. The second equality follows from
the property that 2 sin θ cos θ = sin 2θ. The third equality follows from the property that sin udu =
−d cosu. The fourth equality follows from the property that udv = d (uv)−vdu. The sixth equality
follows from the property that cos 2θ = 1− 2 sin2 θ.

Copyright © Professor Chen Education Palace. All Rights Reserved. No part of this document
may be copied or reproduced without the written permission of Professor Chen Education Palace.

Page 4



PROFESS
OR

CHEN

EDUCATIO
N

PA
LA

CE

Website: www.professorchenedu.com E-mail: contact@professorchenedu.com
Phone: +1 626-385-7691 Wechat ID: professorchenedu

Because the above quantity is equal to 0, taking the integral, we get

3R
4 θ̇2 − R

4 θ̇
2 cos 2θ + 2g cos θ = const.

We have the initial values θ0 = 0, θ̇0 = 0. Thus, the constant above is 2g.
Therefore,

3R
4 θ̇2 − R

4 θ̇
2 cos 2θ + 2g cos θ = 2g.

Therefore,

θ̇2 = 8g
R

1− cos θ
3− cos 2θ

= 4g
R

1− cos θ
1 + sin2 θ

.

The second equality follows from the property that cos 2θ = 1− 2 sin2 θ.

4. Some Problem-Solving Skills that I Used
It is worth highlighting some problem-solving skills that I used to solve this problem. I realize not
lots of students are familiar with these skills. So it is valuable for them to learn these skills here.

1. (Try to avoid generating 2nd-order derivative terms) In general, it is harder to solve
differential equations with 2nd-order derivative terms than those that have up to the 1st-order
derivative terms.
For example, for (2’), because the R.H.S. is 0, we can immediately see that the term within
d
dt (·) on the L.H.S. is a constant. Doing so gives us Equation (2”) that has up to the 1st-order
derivative terms only.
By contrast, for (2’), if we take the derivative, then we get an equation with 2nd-order
derivative terms. This complicates the subsequent analysis or even makes us impossible to
solve the problem.

2. (Express a 2nd-order derivative in terms of its 0th and 1st-order derivatives)
We are not always as lucky as Equation (2’) that can be converted to a form without having
any 2nd-order derivative term. For example, Equation (4) has a 2nd-order derivative term θ̈.
In such a situation, we can apply the skill that I used in §3 to make the following conversion:

θ̈ = dθ̇

dθ
θ̇. (5)

After this manipulation, our equation no longer has θ̈. By contrast, this 2nd-order derivative
term is replace by some operations and combinations of the 0th-order term θ and the 1st-order
term θ̇. Therefore, in the rest of the analysis, we only need to solve an equation with θ and
θ̇, not θ̈.

To conclude this note, we show another application of Equation (5). We use it to establish a very
crucial result in Hamiltonian mechanics, another useful scheme to characterize physics systems.
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Theorem 1. Consider the following harmonic oscillator of mass m:

ẍ+ ω2x = 0,

where x is the position. Denote by p the momentum.
Then in the phase space, the trajectory of (x, p) is an ellipse.

Proof. Applying Equations (5) into the harmonic equation in this theorem, we get

dẋ

dx
· ẋ+ ω2x = 0.

Thus,
ẋdẋ+ ω2xdx = 0.

Thus,

d
ẋ2

2 + ω2d
x2

2 = 0.

Multiplying both sides by 2m2 and applying the fact that p = mẋ, we get

d
(
p2 +m2ω2x2

)
= 0.

Hence,
p2 +m2ω2x2 = C,

where the constant C can be computed with the initial values of x and p.
Therefore, in the phase space, the trajectory of (x, p) is an ellipse. �
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